3.597 \(\int \frac{(1-\cos ^2(c+d x)) \sec (c+d x)}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=76 \[ \frac{2 \sqrt{a-b} \sqrt{a+b} \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a b d}+\frac{\tanh ^{-1}(\sin (c+d x))}{a d}-\frac{x}{b} \]

[Out]

-(x/b) + (2*Sqrt[a - b]*Sqrt[a + b]*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a*b*d) + ArcTanh[Sin[
c + d*x]]/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.116554, antiderivative size = 76, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.129, Rules used = {3058, 2659, 205, 3770} \[ \frac{2 \sqrt{a-b} \sqrt{a+b} \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a b d}+\frac{\tanh ^{-1}(\sin (c+d x))}{a d}-\frac{x}{b} \]

Antiderivative was successfully verified.

[In]

Int[((1 - Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Cos[c + d*x]),x]

[Out]

-(x/b) + (2*Sqrt[a - b]*Sqrt[a + b]*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a*b*d) + ArcTanh[Sin[
c + d*x]]/(a*d)

Rule 3058

Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)])), x_Symbol] :> Simp[(C*x)/(b*d), x] + (Dist[(A*b^2 + a^2*C)/(b*(b*c - a*d)), Int[1/(a + b*Sin[
e + f*x]), x], x] - Dist[(c^2*C + A*d^2)/(d*(b*c - a*d)), Int[1/(c + d*Sin[e + f*x]), x], x]) /; FreeQ[{a, b,
c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\left (1-\cos ^2(c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)} \, dx &=-\frac{x}{b}+\frac{\int \sec (c+d x) \, dx}{a}-\left (-\frac{a}{b}+\frac{b}{a}\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx\\ &=-\frac{x}{b}+\frac{\tanh ^{-1}(\sin (c+d x))}{a d}+\frac{\left (2 \left (\frac{a}{b}-\frac{b}{a}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{d}\\ &=-\frac{x}{b}+\frac{2 \sqrt{a-b} \sqrt{a+b} \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a b d}+\frac{\tanh ^{-1}(\sin (c+d x))}{a d}\\ \end{align*}

Mathematica [A]  time = 0.135954, size = 115, normalized size = 1.51 \[ -\frac{-2 \sqrt{b^2-a^2} \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )+a c+a d x+b \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-b \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}{a b d} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Cos[c + d*x]),x]

[Out]

-((a*c + a*d*x - 2*Sqrt[-a^2 + b^2]*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]] + b*Log[Cos[(c + d*x)
/2] - Sin[(c + d*x)/2]] - b*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])/(a*b*d))

________________________________________________________________________________________

Maple [B]  time = 0.043, size = 153, normalized size = 2. \begin{align*} -2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{db}}+2\,{\frac{a}{db\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}\arctan \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-2\,{\frac{b}{da\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}\arctan \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-{\frac{1}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+{\frac{1}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c)),x)

[Out]

-2/d/b*arctan(tan(1/2*d*x+1/2*c))+2/d*a/b/((a+b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1
/2))-2/d/a*b/((a+b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))-1/d/a*ln(tan(1/2*d*x+1/2
*c)-1)+1/d/a*ln(tan(1/2*d*x+1/2*c)+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int - \frac{\sec{\left (c + d x \right )}}{a + b \cos{\left (c + d x \right )}}\, dx - \int \frac{\cos ^{2}{\left (c + d x \right )} \sec{\left (c + d x \right )}}{a + b \cos{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)**2)*sec(d*x+c)/(a+b*cos(d*x+c)),x)

[Out]

-Integral(-sec(c + d*x)/(a + b*cos(c + d*x)), x) - Integral(cos(c + d*x)**2*sec(c + d*x)/(a + b*cos(c + d*x)),
 x)

________________________________________________________________________________________

Giac [A]  time = 1.34528, size = 176, normalized size = 2.32 \begin{align*} -\frac{\frac{d x + c}{b} - \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a} + \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a} - \frac{2 \,{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )} \sqrt{a^{2} - b^{2}}}{a b}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

-((d*x + c)/b - log(abs(tan(1/2*d*x + 1/2*c) + 1))/a + log(abs(tan(1/2*d*x + 1/2*c) - 1))/a - 2*(pi*floor(1/2*
(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2))
)*sqrt(a^2 - b^2)/(a*b))/d